Basic tips:
(sin x)^2 + (cos x)^2=1
sin x /cos x= tan x and cos x/sin x=1/tan x
Tan x = 2/3
cot x = 3/2
from enunciation, the value of tan x = 2/3.
1 + (cotx)^2 = 1/(sin x)^2
sin x = 1/sqrt[1+(cot x)^2]
sin x = 1/sqrt[1+(3/2)^2]
sin x= 1/sqrt(1+9/4)
sin x = 2/sqrt13 => sin x = 2sqrt13/13
sin x = 2sqrt13/13
[Source 1]
[Source 2]
(sin x)^2 + (cos x)^2=1
sin x /cos x= tan x and cos x/sin x=1/tan x
Tan x = 2/3
cot x = 3/2
from enunciation, the value of tan x = 2/3.
1 + (cotx)^2 = 1/(sin x)^2
sin x = 1/sqrt[1+(cot x)^2]
sin x = 1/sqrt[1+(3/2)^2]
sin x= 1/sqrt(1+9/4)
sin x = 2/sqrt13 => sin x = 2sqrt13/13
sin x = 2sqrt13/13
[Source 1]
[Source 2]
No comments:
Post a Comment